$26501365 = 65 + 202300 \cdot 131$ ``` full fill even 7769 odd 7780 0,0 start cycle 131 - 65 even 1025 odd 1052 cycle 131 + 65 even 6817 odd 6874 130,0 start cycle 131 - 65 even 1030 odd 1059 cycle 131 + 65 even 6818 odd 6871 0,130 start cycle 131 - 65 even 1017 odd 1041 cycle 131 + 65 even 6805 odd 6853 130,130 start cycle 131 - 65 even 1018 odd 1038 cycle 131 + 65 even 6810 odd 6860 65,0 start cycle 131 even 5965 odd 5866 0,65 start cycle 131 even 5947 odd 5853 130, 65 start cycle 131 even 5951 odd 5859 65,130 start cycle 131 even 5933 odd 5846 ``` 202300 + 1 + 202300 neq: 202300 eq: 202300 202300-1 + 1 + 202300-1 neq: 202300 - 0 + 1 eq: 202300 - 2 + 0 202300-2 + 1 + 202300-2 neq: 202300 - 2 + 0 eq: 202300 - 2 + 1 202300-3 + 1 + 202300-3 neq: 202300 - 2 + 1 eq: 202300 - 4 + 0 ... 202300-n + 1 + 202300-n neq: 202300-(n - 2(n % 2)) + (n % 2) eq: 202300 sum: $$ \text{half sum of neq} = \frac{(202300/2-1)202300/2}{2} \cdot 2 + 202300 + 202300/2 $$ $$ \text{half sum of eq} = \frac{(202300/2-1)2023000/2}{2} \cdot 2 + 202300/2 $$ 0, 0, 1 \ 1, 1*2 + 2, 1 \ 2, 1\*2 + 2, 1 + 3\*2 + 2 \ 3, 1\*2 + 2 + 5\*2 + 2 , 1 + 3 \* 2 + 2 \ 4, 1\*2 + 2 + 5\*2 + 2 , 1 + 3 \* 2 + 2 + 7 \* 2 + 2\ 5, n