ss
This commit is contained in:
parent
769ac11912
commit
f802d99a0c
167
p4.py
167
p4.py
@ -6,8 +6,9 @@ import pickle
|
|||||||
import matplotlib
|
import matplotlib
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
import random
|
import random
|
||||||
|
import itertools
|
||||||
matplotlib.use("TkAgg")
|
import math
|
||||||
|
#matplotlib.use("TkAgg")
|
||||||
|
|
||||||
PICKLE_DATA_FILENAME = "mnist.pickle"
|
PICKLE_DATA_FILENAME = "mnist.pickle"
|
||||||
if not os.path.exists(PICKLE_DATA_FILENAME):
|
if not os.path.exists(PICKLE_DATA_FILENAME):
|
||||||
@ -30,39 +31,153 @@ X = X / 255
|
|||||||
y = np.array([int(i) for i in y])
|
y = np.array([int(i) for i in y])
|
||||||
Y = np.eye(10)[y]
|
Y = np.eye(10)[y]
|
||||||
|
|
||||||
|
train_x,train_y = X[0:3500*17], Y[0:3500*17]
|
||||||
|
dev_x,dev_y = X[3500*17:3500*18], Y[3500*17:3500*18]
|
||||||
|
test_x,test_y = X[3500*18:3500*20], Y[3500*18:3500*20]
|
||||||
|
|
||||||
gen:np.random.Generator = np.random.default_rng()
|
gen:np.random.Generator = np.random.default_rng()
|
||||||
eta = 0.01
|
eta = 0.0001
|
||||||
|
|
||||||
MiniBatchN = 100
|
MiniBatchN = 32
|
||||||
|
|
||||||
weight1 = Variable(gen.normal(0,1,size=(784,10)))
|
class CheckPoint:
|
||||||
bias1 = Variable(gen.normal(0,1,size=(10)))
|
def __init__(self,param,accuracy,loss,iteration):
|
||||||
|
super().__init__()
|
||||||
|
self.param = param
|
||||||
|
self.accuracy = accuracy
|
||||||
|
self.loss = loss
|
||||||
|
self.iteration = iteration
|
||||||
|
|
||||||
|
class Model:
|
||||||
|
def __init__(self, layerDim:[int]):
|
||||||
|
super().__init__()
|
||||||
|
gen:np.random.Generator = np.random.default_rng()
|
||||||
|
self.layerDim = layerDim
|
||||||
|
self.param = []
|
||||||
|
self.checkpoints = []
|
||||||
|
self.iteration = 0
|
||||||
|
front = 784
|
||||||
|
for sd in layerDim:
|
||||||
|
back = sd
|
||||||
|
weight = Variable(gen.normal(0,1,size=(front,back)))
|
||||||
|
bias = Variable(gen.normal(0,1,size=(back)))
|
||||||
|
self.param.append((weight,bias))
|
||||||
|
front = back
|
||||||
|
|
||||||
|
def caculate(self,input_x,y):
|
||||||
|
input_var = Variable(input_x)
|
||||||
|
Z = input_var
|
||||||
|
for i,(w,b) in enumerate(self.param):
|
||||||
|
U = Z @ w + b
|
||||||
|
if i < len(self.param) - 1:
|
||||||
|
Z = relu(U)
|
||||||
|
else:
|
||||||
|
Z = U
|
||||||
|
J = SoftmaxWithNegativeLogLikelihood(Z,y)
|
||||||
|
return J
|
||||||
|
def train_one_iterate(self,input_x,y,eta):
|
||||||
|
#forward pass
|
||||||
|
J = self.caculate(input_x,y)
|
||||||
|
#backpropagation
|
||||||
|
J.backprop(np.ones(()))
|
||||||
|
for i,(w,b) in enumerate(self.param):
|
||||||
|
w = Variable(w.numpy() - (w.grad) * eta)
|
||||||
|
b = Variable(b.numpy() - (b.grad) * eta)
|
||||||
|
self.param[i] = (w,b)
|
||||||
|
self.iteration += 1
|
||||||
|
return J
|
||||||
|
|
||||||
|
def get_loss_and_confusion(self,input_x,y):
|
||||||
|
J = self.caculate(input_x,y)
|
||||||
|
s = J.softmax_numpy()
|
||||||
|
s = np.round(s)
|
||||||
|
confusion = (np.transpose(y)@s)
|
||||||
|
return J.numpy(), confusion
|
||||||
|
|
||||||
|
def set_checkpoint(self,dev_x,dev_y):
|
||||||
|
J = self.caculate(dev_x,dev_y)
|
||||||
|
loss = np.average(J.numpy())
|
||||||
|
print(f"check point #{len(self.checkpoints)}")
|
||||||
|
print(self.iteration,'iteration : avg loss : ',loss)
|
||||||
|
|
||||||
|
confusion = get_confusion(J)
|
||||||
|
accuracy = get_accuracy_from_confusion(confusion)
|
||||||
|
print('accuracy : {:.2f}%'.format(accuracy * 100))
|
||||||
|
self.checkpoints.append(CheckPoint(
|
||||||
|
self.param,
|
||||||
|
accuracy*100,
|
||||||
|
loss,
|
||||||
|
self.iteration
|
||||||
|
))
|
||||||
|
|
||||||
|
def get_confusion(J:SoftmaxWithNegativeLogLikelihood):
|
||||||
|
s = J.softmax_numpy()
|
||||||
|
s = np.eye(10)[np.argmax(s,axis=len(s.shape)-1)]
|
||||||
|
confusion = (np.transpose(J.y)@s)
|
||||||
|
return confusion
|
||||||
|
|
||||||
|
def get_accuracy_from_confusion(confusion):
|
||||||
|
return np.trace(confusion).sum() / np.sum(confusion)
|
||||||
|
|
||||||
|
def model_filename(layerDim:[int]):
|
||||||
|
return f"model{layerDim}.pickle"
|
||||||
|
|
||||||
|
def save_model(model:Model):
|
||||||
|
with open(model_filename(model.layerDim),"wb") as model_file:
|
||||||
|
pickle.dump(model,model_file)
|
||||||
|
|
||||||
|
def load_or_create_model(layerDim:list):
|
||||||
|
model_name = model_filename(layerDim)
|
||||||
|
if os.path.exists(model_name):
|
||||||
|
with open(model_name,"rb") as model_file:
|
||||||
|
return pickle.load(model_file)
|
||||||
|
else:
|
||||||
|
return Model(layerDim)
|
||||||
|
model = load_or_create_model([300,300,100,10])
|
||||||
|
|
||||||
accuracy_list = []
|
accuracy_list = []
|
||||||
|
loss_list = []
|
||||||
|
iteration_list = []
|
||||||
|
end_n = math.floor(3500*17 /MiniBatchN)
|
||||||
|
|
||||||
for iteration in range(0,100):
|
for epoch in range(1):
|
||||||
choiced_index = gen.choice(range(0,60000),MiniBatchN)
|
#one epoch
|
||||||
input_var = Variable(X[choiced_index])
|
for iteration in range(0,end_n):
|
||||||
U1 = (input_var @ weight1 + bias1)
|
choiced_index = gen.choice(range(0,len(train_x)),MiniBatchN)
|
||||||
J = SoftmaxWithNegativeLogLikelihood(U1,Y[choiced_index])
|
batch_x = train_x[choiced_index]
|
||||||
|
batch_y = train_y[choiced_index]
|
||||||
|
#batch_x = train_x[MiniBatchN*iteration:MiniBatchN*(iteration+1)]
|
||||||
|
#batch_y = train_y[MiniBatchN*iteration:MiniBatchN*(iteration+1)]
|
||||||
|
model.train_one_iterate(batch_x,batch_y,eta)
|
||||||
|
if (model.iteration-1) % 200 == 0:
|
||||||
|
model.set_checkpoint(dev_x,dev_y)
|
||||||
|
if (model.iteration) % 10 == 0:
|
||||||
|
print(f"iteration {model.iteration+1}")
|
||||||
|
|
||||||
J.backprop(np.ones(()))
|
J = model.caculate(test_x,test_y)
|
||||||
#update variable
|
loss = np.average(J.numpy())
|
||||||
weight1 = Variable(weight1.numpy() - (weight1.grad) * eta)
|
print('testset : avg loss : ',loss)
|
||||||
bias1 = Variable(bias1.numpy() - (bias1.grad) * eta)
|
|
||||||
if iteration % 5 == 0:
|
|
||||||
print(iteration,'iteration : avg(J) == ',np.average(J.numpy()))
|
|
||||||
s = J.softmax_numpy()
|
|
||||||
#print(Y[0:1000].shape)
|
|
||||||
s = np.round(s)
|
|
||||||
confusion = (np.transpose(Y[choiced_index])@s)
|
|
||||||
accuracy = np.trace(confusion).sum() / MiniBatchN
|
|
||||||
print('accuracy : ',accuracy * 100,'%')
|
|
||||||
accuracy_list.append(accuracy)
|
|
||||||
|
|
||||||
|
confusion = get_confusion(J)
|
||||||
|
accuracy = get_accuracy_from_confusion(confusion)
|
||||||
|
print('accuracy : {:.2f}%'.format(accuracy * 100))
|
||||||
|
if True:
|
||||||
|
save_model(model)
|
||||||
|
|
||||||
|
plt.subplot(1,2,1)
|
||||||
plt.title("accuracy")
|
plt.title("accuracy")
|
||||||
plt.plot(np.linspace(0,len(accuracy_list),len(accuracy_list)),accuracy_list)
|
plt.plot([*map(lambda x: x.iteration,model.checkpoints)],
|
||||||
|
[*map(lambda x: x.accuracy,model.checkpoints)]
|
||||||
|
)
|
||||||
|
plt.subplot(1,2,2)
|
||||||
|
plt.title("loss")
|
||||||
|
plt.plot([*map(lambda x: x.iteration,model.checkpoints)],
|
||||||
|
[*map(lambda x: x.loss,model.checkpoints)])
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
plt.title("confusion matrix")
|
plt.title("confusion matrix")
|
||||||
plt.imshow(confusion,cmap='gray')
|
plt.imshow(confusion,cmap='Blues')
|
||||||
|
plt.colorbar()
|
||||||
|
for i,j in itertools.product(range(confusion.shape[0]),range(confusion.shape[1])):
|
||||||
|
plt.text(j,i,"{:}".format(confusion[i,j]),horizontalalignment="center",color="white" if i == j else "black")
|
||||||
plt.show()
|
plt.show()
|
Loading…
Reference in New Issue
Block a user